O(1)常数阶 < O(logn)对数阶 < O(n)线性阶 < O(n^2)平方阶 < O(n^3)(立方阶) < O(2^n) (指数阶)

For O(n)

int function1(int x, int n) {
    int result = 1;  // 注意 任何数的0次方等于1
    for (int i = 0; i < n; i++) {
        result = result * x;
    }
    return result;
}

Recursion O(n)

int function2(int x, int n) {
    if (n == 0) {
        return 1; // return 1 同样是因为0次方是等于1的
    }
    return function2(x, n - 1) * x;
}

Recursion2 O(n)

int function3(int x, int n) {
    if (n == 0) {
        return 1;
    }
    if (n % 2 == 1) {
        return function3(x, n/2) * function3(x, n/2)*x;
    }
    return function3(x, n/2) * function3(x, n/2);
}

Recursion3 O(logn)

int function4(int x, int n) {
    if (n == 0) {
        return 1;
    }
    int t = function4(x, n/2);// 这里相对于function3,是把这个递归操作抽取出来
    if (n % 2 == 1) {
        return t*t*x;
    }
    return t*t;
}